Exercise 1

Use power series to solve the differential equation.

$$
y^{\prime}-y=0
$$

Solution

$x=0$ is an ordinary point, so the ODE has a power series solution centered here.

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Differentiate the series with respect to x.

$$
y^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
$$

Substitute these formulas into the ODE.

$$
\sum_{n=1}^{\infty} n a_{n} x^{n-1}-\sum_{n=0}^{\infty} a_{n} x^{n}=0
$$

Make the substitution $n=k+1$ in the first series and the substitution $n=k$ in the second series.

$$
\sum_{k+1=1}^{\infty}(k+1) a_{k+1} x^{(k+1)-1}-\sum_{k=0}^{\infty} a_{k} x^{k}=0
$$

Simplify the first sum.

$$
\sum_{k=0}^{\infty}(k+1) a_{k+1} x^{k}-\sum_{k=0}^{\infty} a_{k} x^{k}=0
$$

Now that all the sums start from $k=0$ and have x^{k} in the summand, they can be combined.

$$
\sum_{k=0}^{\infty}\left[(k+1) a_{k+1} x^{k}-a_{k} x^{k}\right]=0
$$

Simplify the summand.

$$
\sum_{k=0}^{\infty}\left[(k+1) a_{k+1}-a_{k}\right] x^{k}=0
$$

Since x^{k} isn't zero, the quantity in square brackets must be zero.

$$
(k+1) a_{k+1}-a_{k}=0
$$

Solve for a_{k+1}.

$$
a_{k+1}=\frac{1}{k+1} a_{k}
$$

In order to determine a_{k}, plug in values for k and try to find a pattern.

$$
\begin{array}{ll}
k=0: & a_{1}=\frac{1}{0+1} a_{0}=\frac{1}{1} a_{0} \\
k=1: & a_{2}=\frac{1}{1+1} a_{1}=\frac{1}{2}\left(\frac{1}{1} a_{0}\right)=\frac{1 \cdot 1}{2 \cdot 1} a_{0} \\
k=2: & a_{3}=\frac{1}{2+1} a_{2}=\frac{1}{3}\left(\frac{1 \cdot 1}{2 \cdot 1} a_{0}\right)=\frac{1 \cdot 1 \cdot 1}{3 \cdot 2 \cdot 1} a_{0}
\end{array}
$$

The general formula is

$$
a_{m}=\frac{1}{m!} a_{0} .
$$

Therefore, the general solution is

$$
\begin{aligned}
y(x) & =\sum_{m=0}^{\infty} a_{m} x^{m} \\
& =\sum_{m=0}^{\infty}\left(\frac{1}{m!} a_{0}\right) x^{m} \\
& =a_{0} \sum_{m=0}^{\infty} \frac{x^{m}}{m!} \\
& =a_{0} e^{x},
\end{aligned}
$$

where a_{0} is an arbitrary constant.

